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Introduction: some 3D discrete integrable
models (without reductions)

dimension
vertex edge face cube hypercube

Q-net [1] 0 1 2 3 4

Grassmann Q-net r 2r + 1 3r + 2 4r + 3 5r + 4

Darboux lattice [2, 3] — 0 1 2 3

Grassmann-Darboux — r 2r + 1 3r + 2 4r + 3

Line congruence [4, 5] 1 2 3 4 5
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Multidimensional quadrilateral lattices

A mapping ZN → Pd is called
N -dimensional Q-net if the ver-
tices of any elementary cell are
coplanar.

Main properties:

• 3-dimensional lattice is uniquely
defined by three 2-dimensional
ones;
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Grassmann generalization of Q-nets

Recall that the Grassmann manifold Gd+1
r+1 is defined as the variety of

(r + 1)-dimensional linear subspaces of some (d + 1)-dimensional linear
space.

Definition 1. A mapping

ZN → Gd+1
r+1, N ≥ 2, d > 3r + 2,

is called the N -dimensional Grassmann Q-net of rank r, if any ele-
mentary cell maps to four r-dimensional subspaces in Pd which lie in
a (3r + 2)-dimensional one.

In other words, the images of any three vertices of a square cell are
generic subspaces and their span contains the image of the last vertex.



We should check that:

• the initial data on three 2-dimensional coordinate planes in Z3

define a 3-dimensional Grassman Q-net;

• the initial data on six 2-dimensional coordinate planes in Z4

are not overdetermined and correctly define a 4-dimensional Grassman
Q-net.

The proof of both properties will be based on the calculation of
dimensions of subspaces,

dim(A + B) = dim A + dim B − dim(A ∩B).



Theorem 1. Let seven r-dimensional subspaces X, Xi, Xij , 1 ≤ i 6=
j ≤ 3 be given in Pd, d ≥ 4r + 3, such that

dim(X + Xi + Xj + Xij) = 3r + 2

for each pair of indices, but with no other degeneracies. Then the con-
ditions

dim(Xi + Xij + Xik + X123) = 3r + 2

define an unique r-dimensional subspace X123.

Proof. All subspaces under consideration lie in the ambient (4r + 3)-
dimensional space spanned over X, X1, X2, X3. Generically, the sub-
spaces Xi + Xij + Xik are also (3r + 2)-dimensional. The subspace
X123, if exists, lies in the intersection of three such subspaces. In the
(4r + 3)-dimensional space, the dimension of a pairwise intersection is
2(3r + 2)− (4r + 3) = 2r + 1, and therefore the dimension of the triple
intersection is (4r + 3)− 3(3r + 2) + 3(2r + 1) = r as required. �



Theorem 2. The 3-dimensional Grassmann Q-nets are 4D-consistent.

Proof. We have to check that six (3r+2)-dimensional subspaces through
Xij , Xijk, Xijl meet in a r-dimensional one (which is X1234). This is
equivalent to the computation of the dimension of intersection of four
generic (4r + 3)-dimensional subspaces in a (5r + 4)-dimensional space
which is r. �



Discrete Darboux-Zakharov-Manakov system

Recall that the Grassmann manifold can be defined as

Gd+1
r+1 = (V d+1)r+1/GLr+1

where GLr+1 acts as the base changes in any (r + 1)-dimensional sub-
space of V d+1. Such subspaces are identified with (r + 1) × (d + 1)
matrices which are equivalent modulo left multiplication by matrices
from GLr+1.

We adopt the “affine” normalization by choosing the representatives
as

x =

 x1,1 . . . x1,d−r 1 . . . 0
...

...
. . .

xr+1,1 . . . xr+1,d−r 0 . . . 1

 .



Then the condition that the subspace Xij belongs to the (3r + 2)-
dimensional linear span X + Xi + Xj gives the following auxiliary linear
problem with the matrix coefficients [6, 7]

xij = x + aij(xi − x) + aji(xj − x). (1)

The calculation of the consistency conditions: one has to substitute xik

and xjk into

xijk = xk + aij
k (xik − xk) + aji

k (xjk − xk)

and to compare the results after permutation of i, j, k. This leads, in
principle, to a birational map

[6] L.V. Bogdanov, B.G. Konopelchenko. Lattice and q-difference Darboux-
Zakharov-Mañakov systems via ∂̄-dressing method. J. Phys. A 28:5
(1995) L173–178.

[7] A. Doliwa. Geometric algebra and quadrilateral lattices. arXiv:
0801.0512.



(a12, a21, a13, a31, a23, a32) 7→ (a12
3 , a21

3 , a13
2 , a31

2 , a23
1 , a32

1 ),

but it is too bulky even in the commutative case. Some change of
variables is needed.

The consistency conditions imply, in particular, the relations

aij
k aik = aik

j aij . (2)

This allows to introduce the discrete Lamé coefficients hi by the formula

aij = hi
j(h

i)−1.

Now the linear problem takes the form

xij = x + hi
j(h

i)−1(xi − x) + hj
i (h

j)−1(xj − x)

and then one more change

xi − x = hiyi, bij = (hi
j)
−1(hj

i − hj)



brings it to the form
yi

j = yi − bijyj . (3)

The matrices bij are called the discrete rotation coefficients.

The compatibility conditions of the linear problems (3) are perfectly
simple. We have

yi
jk = yi + bikyk + bij

k (yj + bjkyk) = yi + bijyj + bik
j (yk + bkjyj)

which leads to the coupled equations

bij
k − bik

j bkj = bij , −bij
k bjk + bik

j = bik

and finally to an explicit mapping.

Theorem 3. The compatibility conditions of equations (3) are equivalent
to the birational mapping for the discrete rotation coefficients

bij
k = (bij + bikbkj)(I − bjkbkj)−1, bij ∈ Mat(r + 1, r + 1)

which is multi-dimensionally consistent.



Darboux lattice

The lattice proposed in [2, 3] is
a mapping

E(ZN ) → Pd

such that the image of the edges
of any elementary quadrilateral
is a set of four collinear points.

Intersections of a fixed hy-
perplane with the lines corre-
sponding to the edges of a Q-
net form a Darboux lattice.

The picture demonstrates the
images of a cube and a hyper-
cube.
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The Grassmann generalization of Darboux lattice

Definition 2. A mapping

E(ZN ) → Gd+1
r+1

is called Grassmann-Darboux lattice if the image of any elementary
quadrilateral consists of four r-dimensional subspaces in Pd which lie
in a (2r + 1)-dimensional one.

As in r = 0 case, Grassmann-Darboux lattice is obtained from a
Grassmann Q-net by intersection of some fixed subspace of codimension
r + 1.



Let us demonstrate how to reduce Definition 2 to the discrete Darboux-
Zakharov-Manakov system again. As before, we use the “affine” nor-
malization, then

xi
j = rijxi + (I − rij)xj .

The consistency condition is

xi
jk = rij

k (rikxi + (I − rik)xk) + (I − rij
k )(rjkxj + (I − rjk)xk)

and alteration of j, k yields

rij
k rik = rik

j rij ⇒ rij = si
j(s

i)−1.

Now the change (si)−1xi = yi brings the linear problem to the form (3)

yi
j = yi − bijyj , bij = ((si)−1 − (si

j)
−1)sj .



Pappus vs. Moutard — 1:0

Recall that in the scalar case we have a plenty of reductions: reduction
on quadric, orthogonal nets, Carnot reduction, A-nets, . . . , Z-nets, . . .

Do their analogs exist in the Grassmann case? This question maybe
rather difficult to answer. No good examples are known for now.

The so-called Koenigs reduction of
Q-nets seems to be a very natural can-
didate for the Grassmann generaliza-
tion since it can be formulated in terms
of subspaces: each set of four points
x, x12, x13, x23 and x1, x2, x3, x123

is coplanar (dashed lines).
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A Grassmann generalization seems
obvious, but meets an obstacle.

The explanation is that the exis-
tence of Koenigs reduction is based
on the well known Möbius theorem
on two mutually inscribed tetrahedra.
This theorem is proved with the use
of Pappus hexagram theorem which,
in turn, is equivalent to the commuta-
tivity of the multiplication in the field
of constants [10].

[10] D. Hilbert. Grundlagen der Geometrie. Leipzig, 1899.



The related example of Moutard reduction corresponds to the skew
symmetry aij = −aji of the coefficients in equation (1). Recall that this
choice leads to such important integrable models as star-triangle map
and discrete BKP equation.

In the noncommutative case, this reduction turns equations (2) into

aij
k aki = aki

j aij , ajk
i aij = aij

k ajk, aki
j ajk = ajk

i aki

which lead to the constraint

aki(aij)−1ajk = ajk(aij)−1aki.

Moreover, the constraints corresponding to eight cubes adjacent to a
common vertex are not compatible with each other, so that the global
construction of a lattice satisfying such constraint is not possible, cf [7].

Construction of Grassmann reductions remains an open problem.


